Decumulation of Allenes Drives the Cope Ring Expansion to 1,5-Cyclodecadienes

Edwin Vedejs* and Arthur Cammers-Goodwin Chemistry Department, University of Wisconsin, Madison, Wisconsin 53706

Received September 20, 1994

Wharton and Johnson have shown that the Cope equilibrium strongly favors trans-1,2-divinylcyclohexane 1 over 1,5 -cyclodecadiene 2 ($\Delta G^{\circ}=8.5 \mathrm{kcal} \mathrm{mol}^{-1}$ at 40 ${ }^{\circ} \mathrm{C} ; K_{\mathrm{EQ}}=1.3 \times 10^{-6}$). ${ }^{1}$ However, a favorable combination of several alkyl substituent and fused ring effects can partially compensate for the transannular strain that destabilizes 2. Derivatives of 2 as well as 1 can be observed in equilibrium in several cases, ${ }^{2}$ and complete conversion to the 10 -membered ring isomer is reported in the Cope rearrangement of epi-isolinderalactone to neolinderalactone, ${ }^{3}$ as well as in a number of oxy-Cope analogs. ${ }^{4,5}$ The anionic oxy-Cope technique is the method of choice, and has been widely used in synthesis of cyclodecanones and other medium sized rings. ${ }^{5}$ Ring expansion is driven by the dominant thermodynamic effect of a single functional group conversion, but at the cost of strongly basic conditions (sodium or potassium alkoxides and enolates).

We have been interested in the possibility that a simple change in carbon hybridization might also make a dominant thermodynamic contribution in the Cope ring expansion. Thus, replacement of one of the vinyl groups in Wharton's system by an allenyl group was expected to destabilize the 6 -membered ring (5 or 6) relative to the 10 -membered isomer (7 or 8). The corresponding Cope rearrangement of $1,2,6$-heptatriene is known to be exothermic due to the "decumulation" of the allene subunit to a conjugated 1,3-diene fragment $\mathrm{CH}_{2}=\mathrm{CHC}$ $(\mathrm{R})=\mathrm{CH}_{2}$ ($\mathrm{R}=$ allyl), ${ }^{6 \mathrm{ab}}$ but the heat of reaction was not reported. ${ }^{6,7 \mathrm{a}}$ The ΔH° for decumulation in a relevant

[^0]example can be estimated as ca. $-13 \mathrm{kcal} \mathrm{mol}^{-1}$ by comparing ΔH_{f}° values for 3 -methylbutadiene ($\Delta H_{f}{ }^{\circ}=$ $30.9 \mathrm{kcal} \mathrm{mol}^{-1}$) and isoprene ($\Delta H_{\mathrm{f}}{ }^{\circ}=18.0 \mathrm{kcal} \mathrm{mol}^{-1}$). ${ }^{7 \mathrm{~b}}$ Since the $S_{f}{ }^{\circ}$ values for these isomers nearly cancel, ${ }^{7 c}$ the ΔG° of decumulation should be in the range of -12 to $-13 \mathrm{kcal} \mathrm{mol}^{-1}$. Other $\mathrm{C}_{5} \mathrm{H}_{8}$ allenes and conjugated dienes differ in $\Delta H_{\mathrm{f}}^{\circ}$ by $8.4-15.6 \mathrm{kcal} \mathrm{mol}^{-1},^{7 \mathrm{bbc}}$ and these numbers can be regarded as the extreme limits for likely values of ΔH° for allene vs. conjugated diene isomers. Thus, decumulation may or may not be enough to compensate for the estimated strain energy of $1,5-$ cyclodecadiene derivatives (ca. $12 \mathrm{kcal} \mathrm{mol}^{-1}$ for 2), ${ }^{1}$ depending on the influence of a medium ring environment on the $\Delta G_{f}{ }^{\circ}$ contributions from conjugation, substitutuent effects, and conformational effects. Definitive experiments have now been performed, and we can report that decumulation is indeed sufficient to drive the Cope ring expansion. Ten-membered rings can be obtained in useful equilibrium ratios by Cope rearrangement of 1 -allenyl-2-vinylcyclohexanes ($80-130^{\circ} \mathrm{C}$).

Isomeric propargyl acetates 3 and 4 were converted into the allenes 5 and 6 by the method of Inanaga et al. $\left(\mathrm{SmI}_{2} / \mathrm{Pd}\left[\mathrm{PPh}_{3}\right]_{4}\right)$. ${ }^{8,9}$ When the cis-isomer 5 was heated

to 90° or above in deuterobenzene, rearrangement occurred smoothly to give complete ($\geq 99 \%$) conversion into an isomeric product identified as Z, E-2-methyl-3-meth-ylene-1,5-cyclodecadiene (7) by ${ }^{1} \mathrm{H}$ NMR (5% NOE between $\mathrm{C}_{2}-\mathrm{Me}$ and $\mathrm{C}_{1}-\mathrm{H} ; J_{5,6}=15.8 \mathrm{~Hz}$) and ${ }^{13} \mathrm{C}$ NMR evidence. As expected for the flexible $Z, E-1,5$-cyclodecadiene, the ring environment was achiral on the NMR time scale at room temperature due to rapid interconversion of conformers.
The trans-isomer 6 rearranged more slowly, and the experiment was difficult to monitor. When 6 was heated
(6) (a) Untch, K. G.; Martin, D. J. J. Am. Chem. Soc. 1965, 87, 4501. Skattebøl, L.; Solomon, S. J. Am. Chem. Soc. 1965, 87, 4506. (b) Frey, H. M.; Lister, D. H. J. Chem. Soc. A 1967, 26. (c) Related rearrangements: Dehmlow, E. V.; Ezimora, G. C. Tetrahedron Lett. 1970, 11, 4047. Roth, W. R.; Heiber, M.; Erker, G. Angew. Chem., Int. Ed. Engl. 1973, 12, 504. Grimme, W.; Rother, H. J. Angew. Chem., Int. Ed. Engl. 1973, 12, 505. Doutheau, A.; Balme, G.; Malacria, M.; Gore, J. Tetrahedron 1980, 36, 1953.
(7) (a) An estimate for $\Delta H^{\circ}=-20.9 \mathrm{kcal} \mathrm{mol}^{-1}$ has been made using group contributions to $\Delta H_{\mathrm{f}}^{\circ}$: Benson, S. W.; O'Neal, H. E. Kinetic Data on Gas Phase Unimolecular Reactions, National Standard Reference Data Series, National Bureau of Standards 21 (1970), p 367. This estimate appears to be in error. Using the parameters given in Table 1, p 40 of this reference, we estimate $\Delta \mathrm{H}^{\circ}=-15.6 \mathrm{kcal} \mathrm{mol}^{-1}$ for the Cope rearrangement of $1,2,6$-heptatriene. (b) Stull, D. R.; Westrum, E. F., Jr.; Sinke, B. C. The Chemical Thermodynamics of Organic Compounds Wiley: NY, 1969; pp 330-333. Pedley, J. B.; Naylor, R. D.; Kirby, S. B. In Thermochemical Data of Organic Compounds; 2nd Ed., Chapman Hall: New York, 1986; pp 89-91. (c) Benson, S. W.; Cruickshank, F. R.; Golden, D. M.; Haugen, G. R.; O'Neal, H. E.; Rodgers, A. S.; Shaw, R.; Walsh, R. Chem. Rev. 1969, 69, 279. (d) Deming, R. L.; Wulff, C. A. In The Chemistry of Ketenes, Allenes, and Related Compounds, Patai, S. Ed., Wiley \& Sons: New York, NY, 1980; Part I, pp 154-164.
(8) House, H. O.; Chu, C.-Y.; Wilkins, J. M.; Umen, M. J. J. Org. Chem. 1975, $40,1460$.
(9) Yields of ca. 50% were obtained using the original procedure without optimization (isopropanol as the hydroxylic agent). Tabuchi, T.; Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 5237. For the preparation of SmI_{2} see: Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102, 2693.

at $130{ }^{\circ} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$, absorptions due to 8 increased in intensity until a ratio of $86: 14$ 8:6 was established. GLPC or HPLC conditions that separate 6 from the product 8 were not found, and ${ }^{1} \mathrm{H}$ NMR analysis was complicated by coalescence phenomena. Signals were sufficiently resolved at $57^{\circ} \mathrm{C}$ to assay the product ratio and to confirm the presence of the trans-disubstituted double bond ($J_{\text {trans }}=15.6 \mathrm{~Hz}$), non-equivalent terminal $\mathrm{C}=\mathrm{CH}_{2}$ protons, and the doubly allylic CH_{2} group. This evidence is consistent with structure 8 , but analogs were desired that could be purified. To this end, two closely related benzo-fused cyclodecadienes 9 and 10 were prepared from the allenylcyclohexane derivatives 11 and 14. Allene 11 was obtained from 10^{10} by the Inanaga method while the isomer 14 was prepared via protodesilylation of the propargyl silane 12 with trifluoroacetic acid, ${ }^{11,12}$ followed by Lombardo olefination of $13 .{ }^{13}$

$12 \mathrm{R}=\mathrm{Cm} \mathrm{CCH}_{2} \mathrm{SiMe}_{2} \mathrm{Ph}$
$\mathrm{Z}=0$
$13 \mathrm{R}=\mathrm{CH}=\mathrm{C}=\mathrm{CH} 2, \mathrm{Z}=\mathrm{O}$
$14 \mathrm{R}=\mathrm{CH}=\mathrm{C}=\mathrm{CH}_{2}, \mathrm{Z}=\mathrm{CH} 2$

Heating 11 or 14 as before afforded 95% or 98% conversion, respectively, to the corresponding $10-\mathrm{mem}-$ bered rings 9 or 15. Both the allene 11 and its Cope product 9 were obtained with $<5 \%$ cross-contamination by chromatography on analytical scale, and heating either isomer at $133^{\circ}\left(\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}\right)$ produced the same equilibrium ratio, $95: 5$ of $9: 11$. The E, E-diene geometry of 9 was established by ${ }^{1} \mathrm{H}$ NMR methods (NOE; vicinal $J_{\text {trans }}=15.8 \mathrm{~Hz}$). The NMR spectrum indicated a chiral ring environment and showed no signs of coalescence up to $80^{\circ} \mathrm{C}$.

In the case of 14 , thermolysis at $130{ }^{\circ} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}\right)$ produced an equilibrium mixture of 15 and 14 in a ratio of $98: 2$. The room temperature ${ }^{1} \mathrm{H}$ NMR spectrum of 15 indicated a chiral ring environment (non-equivalent CH_{2} groups), but the benzylic CH_{2} signals simplified to an apparent triplet at $70^{\circ} \mathrm{C}$, probably due to rapid interconversion by rotamers of the nearby E-disubstituted alkene ($J_{\text {trans }}=16.2 \mathrm{~Hz}$). The doubly allylic CH_{2} group was observed as a pair of doublets ($J_{\mathrm{AB}}=11.8 \mathrm{~Hz}$) at room temperature that merged into a broad absorption at $70{ }^{\circ} \mathrm{C}$ (partial coalescence).

[^1]Each of the ring expansions is stereospecific, within the limits of NMR assay, and the stereochemistry corresponds to the usual preference for chair-like transition states. Thus, the Z, E-cyclodecadiene 7 results from rearangement of 5 via geometry 17, and products from the trans 1 -allenyl-2-vinylcyclohexane derivatives arise via transition structures based on 16. In the most facile

16

17
reaction (5 to 7), the rearrangement obeys first order kinetics and the activation parameters ($E_{\mathrm{a}}=26.5 \pm 0.3$ $\mathrm{kcal} \mathrm{mol}{ }^{-1} ; \Delta H^{*}=25.7 \pm 0.3 \mathrm{kcal} \mathrm{mol}^{-1} ; \Delta S^{*}=-11 \pm 1$ eu) are similar to those of an acyclic analog ($1,2,6-$ heptatriene; $\left.E_{\mathrm{a}}=28.5 \mathrm{kcal} \mathrm{mol}^{-1}\right) .{ }^{6 \mathrm{~b}}$ Compared to the divinyl analog $1\left(E_{\mathrm{a}}=31.6 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right),{ }^{1} 5$ rearranges with a lower activation energy, presumably because some fraction of the thermodynamic advantage of decumulation is felt in the transition state. There is no evidence for a non-concerted mechanism or other unusual behavior.

Prior studies have encountered other reactions where decumulation plays a major role in driving sigmatropic rearrangements. ${ }^{14,15}$ Neutral and anionic allenyl oxyCope ring expansions have also been reported. ${ }^{4 c}$ However, the magnitude of the allene driving force has not attracted much attention. The E, E-cyclodecadiene derivatives 8,9 , and 15 are favored at equilibrium by ΔG° $=1.5-3.0 \mathrm{kcal} \mathrm{mol}^{-1}$, and the less strained Z, E-analog 7 is favored by $>3 \mathrm{kcal} \mathrm{mol}^{-1}$ relative to 5 . These values are in the expected range, based on the estimated strain of $E, E-1,5$-cyclodecadiene (ca. $12 \mathrm{kcal} \mathrm{mol}^{-1}$), ${ }^{1}$ the conversion of a mono-substituted into a disubstituted alkene ($2.5 \mathrm{kcal} \mathrm{mol}^{-1}$), and the free energy advantage of decumulation ($>10 \mathrm{kcal} \mathrm{mol}^{-1}$). The decumulation effect is not as dominant as the $\mathrm{p} K_{\mathrm{a}}$ change from sodium or potassium alkoxides to enolates (ca. 3-4 $\mathrm{p} K_{\mathrm{a}}$ units in ether solvents) that drives the anionic oxy-Cope rearrangement, ${ }^{4-6}$ partly because of the temperature difference. However, our results demonstrate that a single neutral substituent is quite capable of providing the necessary driving force for Cope ring expansion. Studies are planned to evaluate modified cumulenes and other potentially dominant substituents.

Experimental Section

cis-1-(1,2-Butadien-3-yl)-2-vinylcyclohexane (5). According to the published procedure, a THF solution of $3^{8}(135 \mathrm{mg}$, 0.61 mmol), 2-propanol ($50 \mu \mathrm{~L}$), and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(43 \mathrm{mg})$ was treated with $\mathrm{SmI}_{2} /$ THF ($0.1 \mathrm{M}, 13.0 \mathrm{~mL}$) ${ }^{9}$ The mixture was stirred at $50^{\circ} \mathrm{C}$ for 3 h and was then diluted with 2.5 mL pentane. The entire reaction was filtered over a pad of Celite and the Celite pad was washed with 1 mL pentane. THF was removed from the pentane phase by washing $6 \times$ with water and the organic phase was evaporated at reduced pressure, kept cold by the evaporation of pentane to minimize loss of the volatile

[^2]product. The hydrocarbon was purified by flash chromatography on silica gel ($10 \times 1 \mathrm{~cm}$), pentane eluent ($43.6 \mathrm{mg}, 48 \%$ yield); analytical TLC on silica gel, hexane, $R_{f}=0.73$; GLPC (Packard Becker 409 gas chromatograph) equipped with Alltech, Helilflex, AT-1 (formerly RSL-150) capillary column, $30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times$ $0.25 \mu \mathrm{~m}$ film thickness; flow $=1.5 \mathrm{~mL} / \mathrm{min}$ nitrogen, $t_{\mathrm{R}}=4.17$ min, oven temperature $=120^{\circ} \mathrm{C}$; molecular ion calcd for $\mathrm{C}_{12} \mathrm{H}_{18}$ 162.14085; found $m / e=162.1411$, error $=2 \mathrm{ppm} ; \mathrm{M}-15$, 147.1189, error $=10 \mathrm{ppm} ; \mathrm{IR}\left(\mathrm{CCl}_{4}, \mathrm{~cm}^{-1}\right) 1957,=\mathrm{C}=; 3075$, $=\mathrm{CH} ; 2854, \mathrm{CH} ; 200 \mathrm{MHz}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 6.00(1 \mathrm{H}, \mathrm{ddd}$, $J=16.8,10.9,7.8 \mathrm{~Hz}) 5.08(1 \mathrm{H}$, ddd, $J=10.9,2.2,1.2 \mathrm{~Hz}) 5.02$ (1 H , ddd, $J=16.8,2.2,1.2 \mathrm{~Hz}$) $4.72-4.57(2 \mathrm{H}, \mathrm{m}) 2.49-2.43$ ($2 \mathrm{H}, \mathrm{m}$) $1.89-1.03(9 \mathrm{H}, \mathrm{m}) 1.61\left(3 \mathrm{H}, \mathrm{td}, J=3.3,0.6 \mathrm{~Hz}\right.$); ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz},\{\mathrm{H}\}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 207.4,138.8,115.0,101.6$, 75.1, 43.5, 40.6, 32.2, 27.3, 26.4, 21.8, 17.9.
trans-1-(1,2-Butadien-3-yl)-2-vinylcyclohexane (6). Analytical TLC on silica gel, hexane, $R_{f}=0.65$: molecular ion calcd for $\mathrm{C}_{12} \mathrm{H}_{18} 162.14085$; found $m / e=162.1408$, error $=0 \mathrm{ppm} ; \mathrm{M}$ $-15,147.1187$, error $=9 \mathrm{ppm} ; \operatorname{IR}\left(\mathrm{CCl}_{4}, \mathrm{~cm}^{-1}\right) 1958,=\mathrm{C}=; 2854$, $\mathrm{CH} ; 200 \mathrm{MHz}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 5.71(1 \mathrm{H}$, ddd, $J=17.2$, $10.3,10.3 \mathrm{~Hz}$) $4.95(1 \mathrm{H}, \mathrm{ddd}, J=17.2,2.0,1.0 \mathrm{~Hz}) 4.90(1 \mathrm{H}$, ddd, $J=10.3,2.0,0.7 \mathrm{~Hz}) 4.55(2 \mathrm{H}, \mathrm{q}, J=3.2 \mathrm{~Hz}) 2.05-1.86$ ($2 \mathrm{H}, \mathrm{m}$) $1.84-1.59(6 \mathrm{H}, \mathrm{m}) 1.71-1.22(2 \mathrm{H}, \mathrm{m}) 1.62(3 \mathrm{H}, \mathrm{dd}, J$ $=3.3,3.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz},\{\mathrm{H}\}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 207.0$, $143.4,113.3,101.9,74.3,47.4,45.8,33.3,32.2,26.6,26.1,16.8$.
trans-1-(1,2-Butadien-3-yl)-2-vinyl-3,4-dihydronaphthalene (11): molecular ion calcd for $\mathrm{C}_{16} \mathrm{H}_{18} 210.14085$; found m / e $=210.1407$, error $=1 \mathrm{ppm} ; \mathrm{M}-$ vinyl, 183.1173, error $=0 \mathrm{ppm}$; base peak $=129 \mathrm{amu} ; \mathrm{IR}\left(\mathrm{CCl}_{4}, \mathrm{~cm}^{-1}\right) 1959,=\mathrm{C}=; 3075,=\mathrm{CH} ;$ $270 \mathrm{MHz} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.40(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}) 7.09(1$ $\mathrm{H}, \mathrm{ddd}, J=7.0,7.0,2.0 \mathrm{~Hz}) 7.04(1 \mathrm{H}, \mathrm{ddd}, J=7.0,7.0,2.0 \mathrm{~Hz})$ $6.95(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}) 5.81(1 \mathrm{H}, \mathrm{ddd}, J=17.7,10.5,7.5 \mathrm{~Hz})$ $5.02(1 \mathrm{H}, \mathrm{dd}, J=17.7,2.0 \mathrm{~Hz}) 5.00(1 \mathrm{H}, \mathrm{dd}, J=10.5,2.0 \mathrm{~Hz})$ $4.65(1 \mathrm{H}, \mathrm{dq}, J=10.5,3.2 \mathrm{~Hz}) 4.57(1 \mathrm{H}, \mathrm{dq}, J=9.4,3.2 \mathrm{~Hz})$ $3.40(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}) 2.63(1 \mathrm{H}, \mathrm{ddd}, J=16.5,11.3,5.7 \mathrm{~Hz})$ $2.58(1 \mathrm{H}$, ddd, $J=16.5,8.3,4.7 \mathrm{~Hz}$) $2.31(1 \mathrm{H}$, dddd, $J=9.7$, $9.3,7.5,2.9 \mathrm{~Hz}) 1.82(1 \mathrm{H}$, dddd, $J=11.9,9.3,11.3,4.7 \mathrm{~Hz}) 1.5$ $(3 \mathrm{H}, \mathrm{t}, J=3.2 \mathrm{~Hz}) 1.44(1 \mathrm{H}$, dddd, $J=11.9,8.3,5.7,2.9 \mathrm{~Hz}$).

1-Acetyl-2-(1,2-propadien-2-yl)-3,4-dihydronaphthalene (13). $\mathrm{A} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $12(25 \mathrm{mg}, 0.072 \mathrm{mmol}$ of a cis/ trans mixture $)^{11}$ was treated with 3 equiv trifluoroacetic acid at $25^{\circ} \mathrm{C}$ (5 h under a nitrogen). The resulting dark solution was quenched with water and extracted into ether, washed with 1 $\mathrm{N} \mathrm{NaOH}, 2 \times 500 \mu \mathrm{~L}$ and $1 \times 500 \mu \mathrm{~L}$ water, and dried over MgSO_{4}. After removal of solvent (aspirator), the residue was purified by flash chromatography on silica gel ($10 \times 1 \mathrm{~cm}$), 1:16 acetone/hexane eluent ($9.0 \mathrm{mg}, 59 \%$ yield). Starting material 12, 15% yield, was also recovered from the column in a later fraction that closely followed 13; analytical TLC on silica gel, chloroform, $R_{f}=0.56$; GLPC, Hewlett Packard 5890 equipped with an Hp-1 capillary column (methyl silicone gum) $10 \mathrm{~m} \times$ $0.53 \mathrm{~mm} \times 2.65 \mu \mathrm{~m}$ film thickness, $8.45 \mathrm{~mL} / \mathrm{min}$ flow, nitrogen carrier gas, $t_{\mathrm{R}}=10.60 \mathrm{~min},>98 \%$ trans isomer: molecular ion calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O} 212.12010$; found $m / e=212.1203$, error $=1$ $\mathrm{ppm} ; \mathrm{M}-15,197.0986$, error $=10 \mathrm{ppm}$; base peak $=141 \mathrm{amu}$; $\mathrm{IR}\left(\mathrm{CCl}_{4}, \mathrm{~cm}^{-1}\right) 1956,=\mathrm{C}=; 1708, \mathrm{C}=\mathrm{O} ; 200 \mathrm{MHz} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $\mathrm{ppm}) \delta 7.20-7.08(3 \mathrm{H}, \mathrm{m}) 7.01-6.93(1 \mathrm{H}, \mathrm{m}) 5.15(1 \mathrm{H}$, ddd, J $=6.6 \mathrm{~Hz}) 4.74(1 \mathrm{H}$, ddd, $J=10.5,6.6,2.3 \mathrm{~Hz}) 4.78(1 \mathrm{H}$, ddd, $J=10.5,6.6,2.6 \mathrm{~Hz}) 3.69(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}) 2.95-2.83(2 \mathrm{H}$, m) 2.81-2.66 ($1 \mathrm{H}, \mathrm{m}$) 2.16-2.05 ($1 \mathrm{H}, \mathrm{m}$) $2.11(3 \mathrm{H}, \mathrm{s}) 1.62(1$ H , dddd, $J=13.3,10.3,9.2,6.7 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}\{\mathrm{H}\}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 209.7,207.7,136.5,132.7,129.5,128.4,126.9$, 126.2, 96.1, $92.8,59.9,36.5,28.6,27.9,27.6$.

1-(2-Propenyl)-2-(1,2-propadien-2-yl)-3,4-dihydronaphthalene (14). The Lombardo reagent, ${ }^{13} 1 \mathrm{~mL}$ of a stock solution (prepared on the same scale as the published procedure and stored in a reagent vessel at $-5^{\circ} \mathrm{C}$), was added to a THF solution of $200 \mu \mathrm{~L}$ of $13(16.9 \mathrm{mg}, 0.08 \mathrm{mmol})$. After 2 h at $0^{\circ} \mathrm{C}$, the contents of the reaction vessel were diluted with pentane (2 mL) and cautiously quenched with $500 \mu \mathrm{~L}$ of $2 \mathrm{~g} / \mathrm{mL} \mathrm{NaHCO}_{3}$ slurry. After removal of solvent (aspirator), the residue was purified
by flash chromatography on silica gel ($10 \times 1 \mathrm{~cm}$), hexane eluent to give 14 ($11.8 \mathrm{mg}, 0.056 \mathrm{mmol}, 70 \%$ yield) Analytical TLC on silica gel, hexane, $R_{f}=0.38$; molecular ion calcd for $\mathrm{C}_{16} \mathrm{H}_{18}$ 210.14085; found $m / e=210.1412$, error $=2 \mathrm{ppm} ; \mathrm{M}-15$, 195.1170, error $=2 \mathrm{ppm} ; \operatorname{IR}\left(\mathrm{CCl}_{4}, \mathrm{~cm}^{-1}\right) 1955,=\mathrm{C}=; 3074,=\mathrm{CH}$; $2841, \mathrm{CH} ; 500 \mathrm{MHz}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{ppm}\right) \delta 7.24-6.95(4 \mathrm{H}, \mathrm{m}) 5.22$ ($1 \mathrm{H}, \mathrm{ddd}, J=6.7,6.7,6.7 \mathrm{~Hz}$) $4.99(1 \mathrm{H}, \mathrm{dq}, J=2.3,1.3 \mathrm{~Hz}$) $4.85(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}) 4.73(1 \mathrm{H}, \mathrm{dd}, J=10.3,6.7 \mathrm{~Hz}) 4.72$ (1 $\mathrm{H}, \mathrm{dt}, J=10.3,6.7 \mathrm{~Hz}) 3.28(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}) 2.69-2.58$ (2 $\mathrm{H}, \mathrm{m}) 2.39-2.31(1 \mathrm{H}, \mathrm{m}) 1.97(1 \mathrm{H}$, dddd, $J=8.7,4.4,3.3,12.1$ $\mathrm{Hz}) 1.53-1.44(1 \mathrm{H}, \mathrm{m}) 1.48(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz},\{\mathrm{H}\}$, DEPT135, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{ppm}\right) \delta 213.7 \mathrm{~s}, 152.0 \mathrm{~s}, 142.7 \mathrm{~s}, 142.2 \mathrm{~s}, 134.7$ d, $134.4 \mathrm{~d}, 131.8 \mathrm{~d}, 131.7 \mathrm{~d}, 121.3 \mathrm{t}, 99.7 \mathrm{~d}, 81.5 \mathrm{t}, 60.1 \mathrm{~d}, 42.4$ $\mathrm{q}, 35.0 \mathrm{t}, 34.0 \mathrm{t}, 24.1 \mathrm{~d}$.
Thermal Ring Expansions. An NMR tube containing a $\mathrm{C}_{6} \mathrm{D}_{6}$ or $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$ solution of the six-membered ring starting material was frozen in a bath of liquid N_{2}. The space above the frozen solvent was partially evacuated (0.5 torr). The pressure was then equalized by closing off the vacuum line, allowing the sample to slowly thaw, and then bleeding N_{2} into the sample head space. Freeze-pump-thaw cycles were repeated until there was no visible evolution of dissolved gas. The open end of the tube was sealed under vacuum and the samples were thermolyzed in a filings bath contained in a $7 \times 7 \times 13 \mathrm{~cm}^{3}$ insulated aluminum block heated with a temperature controller. In the case of the kinetic experiments to determine the activation parameters, the samples were completely submerged in a thermostated, vigorously agitated, insulated silicone oil bath.
2-Methyl-3-methylene-Z,E-1,5-cyclodecadiene (7): molecular ion calcd for $\mathrm{C}_{12} \mathrm{H}_{18} 162.14085$; found $m / e=162.1405$, error $=2 \mathrm{ppm} ; \mathrm{M}-15,147.1187$, error $=9 \mathrm{ppm} ; \mathrm{IR}\left(\mathrm{CCl}_{4}, \mathrm{~cm}^{-1}\right)$ 2984, $=\mathrm{CH} ; 2854, \mathrm{CH} ; 500 \mathrm{MHz} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{ppm}\right) \delta 5.23(1 \mathrm{H}$, $\mathrm{dt}, J=15.8,6.7 \mathrm{~Hz}) 5.20(1 \mathrm{H}, \mathrm{dt}, J=15.8,7.0 \mathrm{~Hz}) 5.13(1 \mathrm{H}$ dd, $J=7.4,1.4 \mathrm{~Hz}) 4.82(1 \mathrm{H}, \mathrm{dq}, J=2.6,1.1 \mathrm{~Hz}) 4.65(1 \mathrm{H}, \mathrm{t}$, $J=2.6 \mathrm{~Hz}) 2.68-2.55(2 \mathrm{H}, \mathrm{m}) 2.13-1.90(4 \mathrm{H}, \mathrm{m}) 1.74(3 \mathrm{H}$, dd, $J=1.4,1.1 \mathrm{~Hz}) 1.52-1.23(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\operatorname{dept} 135, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{ppm}\right) \delta 149.4 \mathrm{~s}, 135.1 \mathrm{~d}, 134.9 \mathrm{~s}, 127.6 \mathrm{~s}, 125.2$ d, $111.4 \mathrm{t}, 39.2 \mathrm{t}, 33.3 \mathrm{t}, 28.0 \mathrm{t}, 28.4 \mathrm{t}, 26.1 \mathrm{t}, 23.8 \mathrm{q}$.

1,2-Benzo-4-methyl-5-methylene- $E, E-3,7$-cyclodecadiene (9): molecular ion calcd for $\mathrm{C}_{16} \mathrm{H}_{18} 210.14085$; found $m / e=$ 210.1397 , error $=6 \mathrm{ppm} ; \mathrm{M}-15,195.1197$, error $=11 \mathrm{ppm}$; base peak $=195 \mathrm{amu} ;$ IR $\left(\mathrm{CCl}_{4}, \mathrm{~cm}^{-1}\right) 3064,=\mathrm{CH} ; 2853, \mathrm{CH}$; NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{ppm}\right) \delta 7.26(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}) 7.14-7.01$ (3 H , m) $5.81(1 \mathrm{H}$, s) $5.28(1 \mathrm{H}, \mathrm{ddd}, J=15.8,9.7,6.0 \mathrm{~Hz}) 4.99(1 \mathrm{H}$, dd, $J=2.1,1.3 \mathrm{~Hz}) 4.85(1 \mathrm{H}, \mathrm{t}, J=2.1 \mathrm{~Hz}) 4.81(1 \mathrm{H}$, ddd, J $=15.8,9.4,6.4 \mathrm{~Hz}) 3.32(1 \mathrm{H}, \mathrm{ddt}, J=17.1,13.4,4.1 \mathrm{~Hz}) 2.72$ $(1 \mathrm{H}, \mathrm{dd}, J=13.9,5.7 \mathrm{~Hz}) 2.61(1 \mathrm{H}, \mathrm{td}, J=13.1,4.4 \mathrm{~Hz}) 2.50$ $(1 \mathrm{H}, \mathrm{dd}, J=13.9,9.7 \mathrm{~Hz}) 2.54(1 \mathrm{H}, \mathrm{dt}, J=13.8,4.4 \mathrm{~Hz}) 2.17$ (1 H , ddt, $J=17.1,12.4,4.4 \mathrm{~Hz}$) $1.58-1.57(3 \mathrm{H}, \mathrm{m})$.

1,2-Benzo-4-methyl-6-methylene-E,E-3,7-cyclodecadiene (15): molecular ion calcd for $\mathrm{C}_{16} \mathrm{H}_{18} 210.14085$; found m / e $=210.1423$, error $=7 \mathrm{ppm}$; base peak $=116 \mathrm{amu} ; \mathrm{IR}\left(\mathrm{CCl}_{4}\right.$, cm^{-1}) $3074,=\mathrm{CH} ; 2853, \mathrm{CH} ;$ NMR (room temperature, $\mathrm{C}_{6} \mathrm{D}_{6}$, ppm) $\delta 7.26(1 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}) 7.19-7.05(3 \mathrm{H}, \mathrm{m}) 5.86(1 \mathrm{H}$, s) $5.6(1 \mathrm{H}, \mathrm{d}, J=16.2 \mathrm{~Hz}) 5.01-4.97(1 \mathrm{H}, \mathrm{m}) 4.94-4.88(1 \mathrm{H}$, m) $4.66(1 \mathrm{H}$, ddd, $J=16.2,10.3,6.2 \mathrm{~Hz}) 2.78(1 \mathrm{H}, \mathrm{d}, J=11.8$ $\mathrm{Hz}) 2.56(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}) 2.56(1 \mathrm{H}, \mathrm{dd}, J=9.7,4.0 \mathrm{~Hz})$ $2.55-2.50(1 \mathrm{H}, \mathrm{m}) 2.29(1 \mathrm{H}$, ddt, $J=10.3,12.1,4.0 \mathrm{~Hz}) 2.15-$ $1.99(1 \mathrm{H}, \mathrm{m}) 1.49(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz},\{\mathrm{H}\}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{ppm}$) $\delta 147.6,139.9,138.3,138.2,134.2,133.3,131.0,128.9,127.2$, 126.1, 126.1, 112.9, 50.1, 38.5, 34.2, 16.2.

Acknowledgment. This work was supported by the National Science Foundation.

Supplementary Material Available: ${ }^{1} \mathrm{H}$ NMR spectra of $5,6,7,8,9,11,14$, and 15 (8 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^0]: (1) Wharton, P. S.; Johnson, D. W. J. Org. Chem. 1973, 38, 4117. Wharton, P. S.; Kretchmer, R. A. J. Org. Chem. 1968, 33, 4258.
 (2) Takeda, K.; Minato, H. Ishikawa, M.; J. Chem. Soc. 1964, 4578. Fischer, N. H.; Mabry, T. J. J. Chem. Soc., Chem. Commun. 1967, 1235. Takeda, K.; Horibe, I. Minato, H. J. Chem. Soc. (C) 1970, 2704. Banks, C. M.; Jain, T. C.; McCloskey, J. E. Tetrahedron Lett. 1970, 11, 841. Takeda, K.; Horibe, I. Minato, H. J. Chem. Soc., Chem. Commun. 1971, 88. Grieco, P. A.; Nishizawa, M. J. Org. Chem. 1977, 42, 1717. Terada, Y.; Yamamura, S. Tetrahedron Lett. 1979, 20, 3303. Analogous equilibria have also been studied in cyclononadienes; for leading references, see: Wender, P. A.; Lechleiter, J. C. J. Am. Chem. Soc. 1977, 99, 267.
 (3) Gopalan, A.; Magnus, P. J. Org. Chem. 1984, 49, 2317.
 (4) (a) Berson, J. A.; Jones, M., Jr. J. Am. Chem. Soc. 1964, 86, 5017. (b) Brown, E.; Leriverend, P.; Conia, J.-M. Tetrahedron Lett. 1966, 7, 6115. Marvell, E. N.; Whalley, W. Tetrahedron Lett. 1970, 11, 509; Thies, R. W.; Wills, M. T. Tetrahedron Lett. 1970, 11, 513. Thies, R. W. J. Am. Chem. Soc. 1972, 94, 7074. Kato, T.; Kondo, H.; Nishino, M.; Tanaka, M.; Hata, G.; Miyake, A. Bull. Chem. Soc. Jpn. 1980, 53 , 2958. (c) Cookson, R. C.; Singh, P. J. Chem. Soc. C. 1971, 1477. Balakumar, A.; Janardhanam, S.; Rajagopalan, K. J. Org. Chem. 1993, 58, 5482.
 (5) (a) Evans, D. A.; Golob, A. M. J. Am. Chem. Soc. 1975, 97, 4765. (b) Still, W. C.J. Am. Chem. Soc. 1977, 99, 4186. Urabe, H.; Kuwajima, I. Tetrahedron Lett. 1983, 24, 4241. (b) Paquette, L. Angew. Chem., Int. Ed. Engl. 1990, 29, 609.

[^1]: (10) (a) 10 and 11 were prepared according to ref 8 and 9 , starting from 1-acetyl-3,4-dihydronapthalene (ref 10b). (b) Subba Rao, G. S. R.; Sundar, N. S. J. Chem. Soc., Perkin Trans. 1 1982, 875.
 (11) 12 was obtained as a cis/trans mixture from 1-acetyl-3,4dihydronapthalene (ref 10 b) by 1,4 -addition of $\mathrm{Et}_{2} \mathrm{AlC} \equiv \mathrm{CCH}_{2} \mathrm{SiMe}_{2}$ Ph: Hooz, J.; Layton, R. B. J. Am. Chem. Soc. 1971, 93, 7320. Equilibration to the trans isomer occurred under protodesilylation conditions.
 (12) (a) 3 equiv $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \mathrm{~h}$ at room temperature; 59% 13 and 16% recovered 12 after chromatography. (b) Peterson, P. E.; Flood, T. J. Org. Chem. 1980, 45, 5006. Pornet, J.; Damour, D.; Miginiac, L. J. Organomet. Chem. 1987, 319, 333-343.
 (13) 70% yield after 2 h at $0^{\circ} \mathrm{C}$: Lombardo, L. Org. Synth. Coll. Vol. XIII. 1993, 386.

[^2]: (14) Huntsman, W. D. In The Chemistry of Ketenes, Allenes, and Related Compounds, Patai, S. Ed., Wiley \& Sons: New York, NY, 1980; Part II, Chapter 15.
 (15) Frey, H. M.; Ellis, R. J. J. Chem. Soc. 1965, 4770. Heingartner, H.; Zsindely, J.; Hansen, H.-J.; Schmid, H. Helv. Chim. Acta 1973, 56, 2924. Okamura, W. H.; Reischl, W. J. Am. Chem. Soc. 1982, 104, 6115. Okamura, W. H.; Enas, J. D.; Palenzuela, J. A. J. Am. Chem. Soc. 1991, 113, 1355.

